Лабораторная работа № 12

Частотная модуляция и частотное детектирование

ПРОГРАММА ВЫПОЛНЕНИЯ РАБОТЫ

Начало работы

- Включите все приборы, которые задействованы в лабораторной установке. Не выключайте их до окончания занятия (при необходимости временно оставить установку без контроля предупредите преподавателя и согласуйте с ним необходимость отключения приборов).
- Заведите протокол измерений, записав название работы, ФИО преподавателя и выполняющих работу студентов, номер академической группы, номер бригады и дату.

Часть 1. Измерение характеристик частотного модулятора

• Постоянная составляющая E модулирующего напряжения, управляющего частотой сигнала на выходе модулятора, регулируется соответствующим потенциометром и отображается на цифровом индикаторе (индикатор показывает значение напряжения в Вольтах). В макете есть вход для переменного модулирующего сигнала, который подается в схему через проходной конденсатор и суммируется с E, формируя полное модулирующее напряжение, управляющее частотой выходного сигнала модулятора.

1.1. Подключение приборов и регистрация сигнала несущей частоты.

- Подключите осциллограф и частотомер к выходу частотного модулятора, как показано на рисунке 1.
- Убедитесь в наличии гармонического сигнала на выходе модулятора.
- Изменяя напряжение E, убедитесь в том, что частота f выходного сигнала модулятора изменяется.
- Установите значение напряжения E в середине диапазона изменения этого напряжения и зафиксируйте осциллограмму сигнала несущей частоты на выходе модулятора.

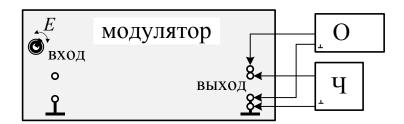


Рис. 1. Схема для измерения статической характеристики частотного модулятора. Ч – частотомер, О – осциллограф.

1.2. Измерение статической модуляционной характеристики.

- ! Под статической модуляционной характеристикой подразумевается зависимость частоты f выходного сигнала модулятора от постоянной составляющей E модулирующего сигнала.
- ! Частоту синусоидальных колебаний на выходе модулятора измеряйте частотомером.
- Запишите в протокол минимальное и максимальное значения напряжения E_{\min} и E_{\max} , а также соответствующие значения частоты f_{\min} и f_{\max} .
- Измерьте зависимости f(E) и $A_{\rm m}(E)$ ($A_{\rm m}$ амплитуда сигнала на выходе модулятора), выбрав $8 \div 12$ значений напряжения E, в диапазоне $E_{\rm min} \div E_{\rm max}$, запишите измеренные значения в протокол.
- Отключите от схемы частотомер, установите $E=2~\mathrm{B}$, и измерьте амплитуду выходного сигнала $A_{\mathrm{m}0}$. Запищите значение $A_{\mathrm{m}0}$ в протокол.

1.3. ПРИ ПОДГОТОВКЕ ОТЧЕТА

Анализ характеристик частотного модулятора.

- Постройте графики зависимостей f(E) и $A_{\rm m}(E)$.
- Оцените границы входного статического напряжения E'_{\min} и E'_{\max} , такие что рабочий участок модуляционной характеристики от E'_{\min} до E'_{\max} соответствовал модуляции частоты без изменения амплитуды. Также запишите в протокол границы этого участка в шкале частот: $f'_{\min} = f(E'_{\min})$, $f'_{\max} = f(E'_{\max})$.
- Оцените крутизну модуляционной характеристики $K_{\rm M}$ [Γ ц/B] для точки E_0 статической характеристики тракта, измеренной при выполнении п. 3.1.

1.4. Наблюдение манипуляции частоты сигнала частотного модулятора.

- ! Манипуляцией частоты (или частотной манипуляцией) называют режим модуляции частоты, при котором частота меняется не непрерывно, а скачками. В частности, частотная манипуляция реализуется в случае, когда модулирующий сигнал представляет собой прямоугольные импульсы. Тогда на выходе модулятора частота изменяется скачками между двумя значениями.
- Подключите генератор и осциллограф ко входу и выходу частотного модулятора, как показано на рисунке 2 с подключением осциллографа к выходу модулятора подключение а) на рисунке 2.
- Установите напряжение E=2 В.
- Установите на генераторе частоту 100 Гц, ослабление выходного сигнала 20 дБ, режим *импульсного сигнала*.
- Установите развертку осциллографа в режим 0.5 мкс/дел.
- Убедитесь, что при снижении амплитуды сигнала генератора до нуля ручкой плавной регулировки амплитуды, на выходе модулятора наблюдается несколько периодов гармонического сигнала. А при установке ручки плавной регулировки

амплитуды на максимум наблюдается два гармонических сигнала ("раздвоенная синусоида").

- Зафиксируйте осциллограмму сигнала с "раздвоенной" синусоидой.
- Переключите осциллограф на вход модулятора подключение б) на рисунке 2. Подберите режим развертки и усиления для наблюдения импульсного сигнала генератора, измерьте размах импульсов на выходе генератора $U_{\rm p-p}$ и запишите это значение в протокол.

Рис. 2. Схема для наблюдения манипуляции частоты сигнала частотного модулятора. Подключение осциллографа к выходу модулятора – а), и ко входу модулятора – б). Ч – частотомер, О – осциллограф.

1.5. ПРИ ПОДГОТОВКЕ ОТЧЕТА

Анализ манипуляции частоты на выходе частотного модулятора.

- ! В данном пункте расчет на основе зарегистрированной осциллограммы сигнала на выходе модулятора (в режиме манипуляции частоты) достаточно прост, но не точен, его надо рассматривать как приближенный, оценочный.
- По осциллограмме сигнала на выходе модулятора в виде "раздвоенной" синусоиды оцените время T_N , за которое сигнал меняется на N периодов, и время δt , на которое один сигнал опережает другой на интервале T_N (пояснение на рисунке 3).
- Оцените примерное изменение частоты δf на выходе модулятора при импульсном воздействии на входе (манипуляция частоты сигнала).
- ! Для оценки изменения частоты можно учитывать следующее:

Период колебания оценивается как $T = T_N/N$. Фазовый сдвиг между сигналами связан с задержкой отношением $\delta \varphi = 2\pi \cdot \delta t/T$. Если на интервале T_N один сигнал сместился по фазе на $\delta \varphi$ относительно другого, то сдвиг частоты между сигналами $\delta \omega = 2\pi \delta f = \delta \varphi/T_N$.

В итоге искомый сдвиг частоты можно оценить по выражению $\delta f = N \cdot \delta t / (T_N)^2$.

- Оцените крутизну $K_{\rm M}$ модуляционной характеристики для установленной в п. 1.4 рабочей точки E по отношению $K_{\rm M}$ = $\delta f/U_{\rm p-p}$.
- Сравните полученную оценку крутизны со значением крутизны модуляционной характеристики, определенной при выполнении пункта 1.3.

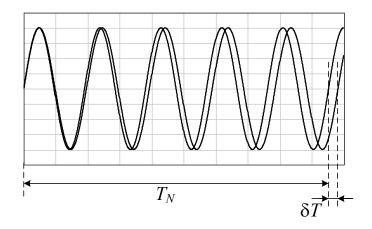


Рисунок 3. Вид осциллограммы с "раздвоенной" синусоидой на выходе частотного модулятора (при манипуляции частоты) с пояснением интервалов времени T_N и δt . На данном рисунке N=5.

Часть 2. Измерение характеристик частотного детектора

• В данном макете частотный детектор предполагает использование резонансного контура, после прохождения которого сигнал с частотной модуляцией приобретает также амплитудную модуляцию. Далее применяется простой амплитудный детектор с диодом и ФНЧ на основе RC-цепи. Для линеаризации детекторной характеристики в макете используется два резонансных контура со сдвинутыми резонансными частотами, два амплитудных детектора (для первого и второго контура), а выходным сигналом частотного детектора является разность выходных сигналов амплитудных детекторов.

2.1. Измерение параметров резонансных контуров.

- Подключите ко входу частотного детектора генератор, осциллограф и частотомер, а к выходам резонансных контуров детектора вольтметры переменного напряжения, как показано на рисунке 4 (для подключения частотомера используйте дополнительное гнездо подключения после каскада эмиттерного повторителя).
- Установите на генераторе режим *гармонического колебания* и частоту в диапазоне $f_{\min} \div f_{\max}$. Установите амплитуду сигнала равную A_{\min} (измеренную в п. 1.2).
- ! Выходные напряжения контуров подаются на гнезда разъемов макета через емкостные делители напряжения, в результате чего измеряемые значения примерно в 10 раз ниже фактического напряжения на контуре. Это сделано для ослабления влияния входного сопротивления и емкости подключаемых приборов на резонансные характеристики контуров.
- Изменяя частоту генератора в актуальном диапазоне (таковым логично считать $f_{\min} \div f_{\max}$), найдите резонансную частоту первого контура $f_{\kappa 1p}$, на которой действующее значение напряжения на выходе первого контура $U_{\kappa 1}$ достигает максимума $U_{\kappa 1 \max}$. Запишите в протокол значения $f_{\kappa 1p}$ и $U_{\kappa 1 \max}$.

- Измерьте ширину полосы пропускания Δf_1 первого контура. Для этого, изменяя частоту генератора в разные стороны от $f_{\kappa 1p}$, найдите и запишите в протокол значения частот, на которых $U_{\kappa 1}$ снижается до уровня 0.707 от уровня $U_{\kappa 1 \text{max}}$.
- Найдите резонансную частоту второго контура $f_{\kappa 2p}$, когда $U_{\kappa 2}$ достигает максимума $U_{\kappa 2 \max}$. Запишите в протокол значения $f_{\kappa 2p}$ и $U_{\kappa 2 \max}$.
- Измерьте ширину полосы пропускания Δf_2 второго контура. Для этого найдите и запишите в протокол значения частот, на которых $U_{\kappa 2}$ снижается до уровня 0.707 от уровня $U_{\kappa 2 \text{max}}$.
- Найдите в области между $f_{\kappa 1p}$ и $f_{\kappa 2p}$ частоту f_0 , на которой $U_{\kappa 1} = U_{\kappa 2}$ и запишите в протокол значение f_0 .

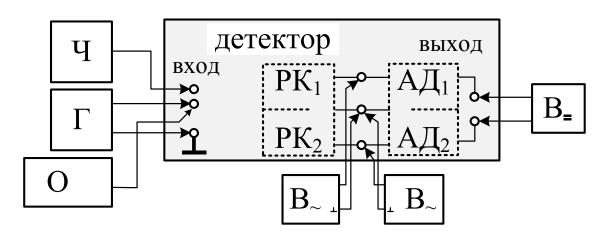


Рис. 4. Схема для измерения характеристик частотного детектора. Γ – генератор, Ч – частотомер, О – осциллограф, B_{\sim} – вольтметры переменного напряжения, $B_{=}$ – вольтметр постоянного напряжения.

2.2. ПРИ ПОДГОТОВКЕ ОТЧЕТА Анализ результатов измерений характеристик резонансных контуров детектора.

- Рассчитайте добротности контуров Q_1 и Q_2 .
- ! Общепринятый вариант оценки добротности по резонансной кривой: $Q_1 = f_{\kappa 1 p} / \Delta f_1$, где Δf_1 ширина резонансной кривой первого контура по уровню 0.707, и аналогично для Q_2 .
- Рассчитайте частоту середины интервала между резонансными частотами контуров $f_{\rm cp} = (f_{\kappa 1 \rm p} + f_{\kappa 2 \rm p})/2$.
- Сравните значение f_0 и $f_{\rm cp}$, поясните, почему эти частоты различаются.

2.3. Измерение статической детекторной характеристики.

- Подключите вольтметр постоянного напряжения к выходу частотного детектора для измерения выходного напряжения детектора $U_{\rm Z}$, как показано на рисунке 4.
- Измерьте детекторную характеристику $U_{\rm Д}(f)$, изменяя частоту генератора, подключенного ко входу детектора, в диапазоне частот $f_{\rm min} \div f_{\rm max}$. При этом нужно

выбрать разумное (~ 10 точек) количество точек шкалы f, в которых регистрируется кривая. В число таких точек должны входить частоты $f_{\rm Д1}$ и $f_{\rm Д2}$ экстремумов измеряемой кривой $U_{\rm Дmax}$ и $U_{\rm Дmin}$ (которые должны примерно соответствовать резонансным частотам контуров детектора) и точка на частоте $f_{\rm Д0}$, в которой измеряемая характеристика переходит через ноль (в которой $U_{\rm Д}=0$). Запишите измеренные значения в протокол.

2.4. ПРИ ПОДГОТОВКЕ ОТЧЕТА Оценка параметров частотного детектора на основе статической детекторной характеристики.

- Постройте статическую детекторную характеристику $U_{\mathbb{Z}}(f)$.
- Рассчитайте максимальную девиацию частоты ЧМ-сигнала, который может демодулировать данный детектор (она ограничена шириной рабочего участка между экстремумами детекторной характеристики: $\Delta f_{\Pi} = f_{\Pi 2} f_{\Pi 1}$).
- Оцените диапазон частот $F_{\rm max}$ модулирующего сигнала, который может быть корректно демодулирован данным детектором (для такой оценки можно принять условие $F_{\rm max} << \Delta f_{\rm II}$).
- Сравните частоты f_0 (измерена в п. 2.1) и $f_{Д0}$.
- Оцените частоту $f_{\text{Дср}} = (f_{\text{Д1}} + f_{\text{Д2}})/2$, которая соответствует середине рабочего диапазона детектора. Насколько различаются $f_{\text{Д0}}$ и $f_{\text{Дср}}$, и с чем это связано?
- Сравните параметры модуляционной характеристики и детекторной характеристики. Насколько согласованы характеристики модулятора и детектора с точки зрения возможности их совместной корректной работы?
- Оцените крутизну детекторной характеристики $K_{\rm Д}$ [В/Гц] в рабочем диапазоне детектора на основе отношения $K_{\rm Д} \approx (U_{\rm Дmax} U_{\rm Дmin})/\Delta f_{\rm Д}$.

<u>Часть 3. Изучение работы тракта передачи с частотной модуляцией</u> несущей частоты

• В данном случае подразумевается тракт передачи некоторого информационного сигнала u(t), когда в канале связи между передатчиком и приемником распространяется не сам сигнал u(t), а узкополосный сигнал т.н. несущей частоты $f_{\rm H}$. При этом исходная информация о колебании u(t) перенесена в сигнал несущей частоты посредством частотной модуляции. Для реализации такого тракта передатчик должен содержать частотный модулятор, а приемник — частотный детектор, что и позволяет демонстрировать данный лабораторный макет.

3.1. Измерение статической передаточной характеристики тракта с частотной модуляцией несущей частоты.

- Отключите от схемы генератор и частотомер. Соедините выход модулятора и вход детектора кабелем, как показано на рисунке 5.
- ! В данном случае модулятор выполняет роль источника сигнала (статическое напряжение E) и передатчика сигнала несущей частоты. Детектор выполняет роль

приемника сигнала. А кабель, соединяющий выход модулятора и вход детектора, выполняет роль канала связи, в котором распространяется ЧМ-сигнал.

- ! В качестве соединительного кабеля в данном макете используется *одиночный провод*, выводы земли (общей точки) выхода модулятора и входа детектора соединять не надо, они уже соединены внутри макета.
- Измерьте статическую передаточную характеристику тракта $U_{\rm Д}(E)$ зависимость выходного напряжения $U_{\rm Д}$ от постоянной составляющей модулирующего напряжения E на входе модулятора. Измерения провести в диапазоне изменения напряжения E, при этом нужно выбрать разумное количество точек (~ 10 точек) в этом диапазоне. При этом в число таких точек должны входить точки E_1 и E_2 , в которых на выходе тракта достигаются экстремумы $U_{\rm Дmax}$ и $U_{\rm Дmin}$, а также точка E_0 в которой $U_{\rm Д}=0$.
- Рассчитайте напряжение $E_{\rm cp}$, соответствующее середине рабочего участка передаточной характеристики тракта $E_{\rm cp} = (E_2 + E_1)/2$.
- Оцените максимальную амплитуду переменного сигнала на входе тракта $E_{\rm m0}$, которая может быть выбрана при использовании данного тракта (в качестве примерной оценки можно взять $E_{\rm m0} \approx (E_2 E_1)/2$).

3.2. ПРИ ПОДГОТОВКЕ ОТЧЕТА Оценка параметров тракта передачи с частотной модуляцией несущей частоты.

- Постройте статическую передаточную характеристику тракта $U_{\rm I\!I}(E)$.
- Поясните характер зависимости $U_{\rm I}(E)$ с учетом вида зависимостей f(E) и $U_{\rm I}(f)$.
- Рассчитайте крутизну рабочего участка (монотонного участка) передаточной характеристики тракта $K_{\rm T}$ по отношению $K_{\rm T}=(U_{\rm Zmax}-U_{\rm Zmin})/(E_2-E_1)$.
- Сравните значение $K_{\rm T}$ с произведением $K_{\rm M}\cdot K_{\rm J}$.

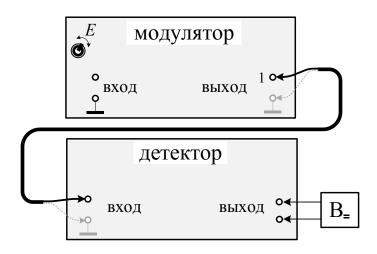


Рис. 5. Схема для измерения статической передаточной характеристики тракта с частотной модуляцией несущей частоты ($B_=$ – вольтметр постоянного напряжения).

3.3. Регистрация сигналов, проходящих через тракт с частотной модуляцией несущей частоты.

- Установите на входе модулятора постоянную составляющую модулирующего напряжения равную E_0 .
- В соответствии с рисунком 6 подключите генератор ко входу модулятора, а каналы осциллографа ко входу модулятора и выходу детектора, чтобы наблюдать осциллограммы переменных сигналов на входе и выходе тракта.
- ! При подключении ко входу модулятора контакт оплетки кабеля осциллографа, как обычно, подключается к контакту общей точки макета. При подключении к выходу детектора контакт оплетки кабеля осциллографа подключается к нижнему контакту выхода (это дополнительно показано на рисунке 6 пунктирной линией).
- Установите генератор в режим *гармонического сигнала* с частотой F_1 = 100 Гц и *амплитудой* $U_{\rm max1}$ примерно $0.3 \cdot E_{\rm m0}$.
- Переведите каналы осциллографа в режим закрытого входа (режим "AC") и установите синхронизацию по первому каналу (по сигналу генератора).
- Зафиксируйте осциллограммы сигналов на входе и выходе тракта (при правильной работе тракта должны отображаться гармонические сигналы с частотой F_1). Запишите в протокол амплитуду входного $U_{\rm msx1}$ и выходного $U_{\rm msix1}$ сигналов.
- Переведите генератор в режим меандра (не меняйте частоту F_1 = 100 Гц, и амплитуду $U_{\rm msx1}$). Зафиксируйте осциллограммы сигналов на входе и на выходе тракта (должны отображаться импульсы с частотой F_1).

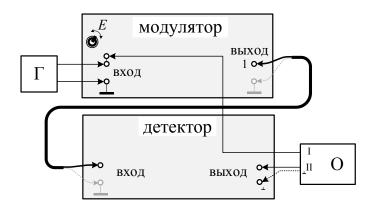


Рис. 6. Схема для регистрации прохождения сигналов через тракт с частотной модуляцией несущей частоты (Г – генератор, О – осциллограф).

3.4. ПРИ ПОДГОТОВКЕ ОТЧЕТА Анализ прохождения сигналов через тракт передачи с частотной модуляцией несущей частоты.

- Сделайте вывод о возможности передачи переменных сигналов через тракт с частотным модулятором и частотным детектором.
- Укажите, какая несущая частота была использована в данном случае. Каковы девиация частоты и индекс частотной (угловой) модуляции сигнала в канале связи.
- Обратите внимание на то, в каком отношении находятся параметры сигнала и их допустимые значения: $U_{\rm mbx1}$ и $E_{\rm m0}, F_{\rm 1}$ и $F_{\rm max}$.
 - Сравните отношение $U_{\text{mвых}1}/U_{\text{mвх}1}$ и значение K_{T} .

3.5. Регистрация искажения сигналов при прохождении через тракт с частотной модуляцией несущей частоты.

— Переведите генератор в режим гармонического сигнала (не меняйте частоту $F=100~\Gamma$ ц, и амплитуду $U_{\rm mbx1}$ — на выходе должен вновь наблюдаться гармонический сигнал).

Изменяйте постоянную составляющую на входе модулятора, увеличивая ее относительно E_0 до тех пор, пока не будут хорошо видны характерные искажения (перегибы) в области положительных полупериодов выходного сигнала.

Зафиксируйте осциллограммы сигналов на входе и на выходе тракта и значение постоянной составляющей на входе модулятора $E_{\rm B}$.

— Изменяйте постоянную составляющую на входе модулятора, уменьшая ее относительно E_0 до тех пор, пока не будут хорошо видны характерные искажения (перегибы) в области отрицательных полупериодов выходного сигнала.

Зафиксируйте осциллограммы сигналов на входе и на выходе тракта и значение постоянной составляющей на входе модулятора $E_{\rm H}$.

- Установите постоянную составляющую на входе модулятора снова равной E_0 (на выходе должен вновь наблюдаться гармонический сигнал).
- Установите амплитуду сигнала на входе модулятора $U_{\rm msx2}$, равной примерно $1,5\cdot E_{\rm m0}$. Зафиксируйте осциллограммы сигналов на входе и на выходе тракта, запишите $U_{\rm msx2}$.
- Установите вновь амплитуду входного сигнала $U_{\rm mbx1}$ (на выходе должен вновь наблюдаться гармонический сигнал)

Зафиксируйте осциллограммы сигналов на входе и на выходе тракта в случае частоты входного сигнала $F_2 = 1$ к Γ ц. Запишите в протокол амплитуды входного и выходного сигналов.

 Установите режим импульсного входного сигнала (не меняйте амплитуду входного сигнала).

Зафиксируйте осциллограммы сигналов на входе и на выходе тракта в случае частоты повторения входных импульсов $F_2 = 1$ к Γ ц.

3.6. ПРИ ПОДГОТОВКЕ ОТЧЕТА Анализ искажения сигналов при прохождении через тракт передачи с частотной модуляцией несущей частоты.

 Для каждого случая зафиксированных при выполнении п. 3.5 осциллограмм входного и выходного сигнала опишите характер искажения выходного сигнала и поясните причины. В каждом случае укажите какие конкретно несоответствия каких параметров на входе и каких параметров, характеризующих тракт передачи, приводят к искажению выходного сигнала.

Завершение работы

На этом действия, предусмотренные Программой выполнения лабораторной работы, закончены.

Выключите все приборы, подпишите протокол измерений у преподавателя.