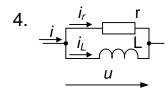
Задание №1

1. Представить данное комплексное число в других формах записи. Определить его модуль и аргумент.

$$68.2^{\pm}j\ 3.57$$
; $-0.42^{\pm}j\ 0.75$; $110 e^{\pm j25^{\circ}30'}$

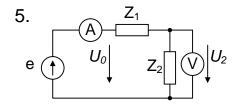

2. Записать комплексные амплитуды для величин, изменяющихся по времени по гармоническому закону. Определить их действующее значение и начальную фазу.

$$u(t) = 15.7 \sin (\omega t - \pi/5), B;$$

 $i(t) = -0.93 \cos (\omega t + 15^{\circ}), A;$

$$e(t) = -2.7 \sin(\omega t)$$
, B

3. Найти мгновеные значения токов, напряжений и ЭДС по заданным комлексным амплитудам (действующим значениям) для частоты $f = 10^5$ Гц.

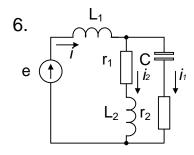

$$\dot{E} = (-45.2 - j \ 37.6), B; \dot{I} = 5.29 \ e^{j0.3}, A; \dot{U}_m = -20.5, B$$

Заданы токи в ветвях цепи:

$$i_r(t) = 1.5 \cos{(10^4 t)}$$
, A; $i_L(t) = 0.5 \sin{(10^4 t)}$, A. Известно $r = 10$ Ом.

Найти величину L, ток i(t) и напряжение u(t). Построить векторную диаграмму.

Комплексное сопротивление $Z_1 = 1 + j 2.5$ Ом соединено последовательно с Z_2 ,


характеризующиеся $\cos \varphi_2 = 0.8$

$$(\phi_2 > 0)$$
.

Показания приборов, включенных в сеть:

$$I_0 = 25$$
, A; $U_0 = 220$, B.

Найти напряжение на входе, U_0 и кпд цепи.

На входе цепи действует ЭДС: e=200 sin10⁴t, В. Даны элементы цепи:

$$r1 = 10$$
 Ом, $r2 = 6$ Ом, $L1 = 0.05$ мГн, $L2 = 0.1$ мГн, $C = 100$ мкФ.

Найти I_{1m} , I_{2m} и активную мощность, потребляемую во всей цепи.