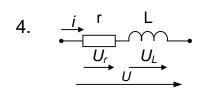
Задание №1

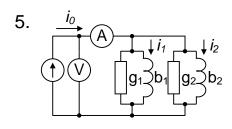
1. Представить данное комплексное число в других формах записи. Определить его модуль и аргумент.


$$8.2^{\pm}$$
 j 4.5 ; -10^{\pm} j 25 ; 3.28 e $^{\pm j \cdot 25}$

2. Записать комплексные амплитуды для величин, изменяющихся по времени по гармоническому закону. Определить их действующее значение и начальную фазу.

$$u(t) = 3.5 \sin (\omega t), B;$$

 $i(t) = 0.6 \cos (\omega t + \pi/8), A;$
 $e(t) = -2.1 \cos (\omega t), B$

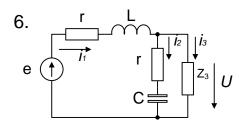

3. Найти мгновеные значения токов, напряжений и ЭДС по заданным комлексным амплитудам (действующим значениям) для частоты $f = 10^5$ Гц.

$$\dot{E}_{m} = (12 - j \ 22), \ B; \quad \dot{I} = -9.5, \ A; \quad \dot{U}_{m} = 2.8 \ e^{-j0.31\pi}, \ B$$

Напряжения на элементах электрической цепи соответственно равны:

 $U_r(t) = 4 \sin (10^6 t)$, B; $U_L(t) = 3 \cos (10^6 t)$, B. Дано сопротивление r = 50 Ом. Найти величину L, полное сопротивление цепи Z, u(t), i(t), сдвиг фаз между u и i. Построить векторную диаграмму.

Даны проводимости элементов цепи:


$$q_1 = 0.22 \text{ CM}, b_2 = 0.02 \text{ CM}.$$

В цепи выделяется активная мощность $P_0 = 8.2$ КВт.

Показания приборов, включенных в сеть:

$$I_0 = 50$$
, A; $U_0 = 220$, B.

Найти I_{m1} и I_{m2} .

На входе электрической цепи действует ЭДС с амплитулой 40 В и частотой $ω = 10^6$ рад/с. Даны элементы цепи:

$$r = 5$$
 Ом, $C = 1$ мк Φ , $L = 5$ мк Γ н

Найти Z_3 , если известно, что i_3 находится в фазе с напряжением на входе, а амплитуда $I_{3m}=15$, А. Найти амплитуду тока i_2 и коэфициент передачи цепи по напряжению K=|U|/e|