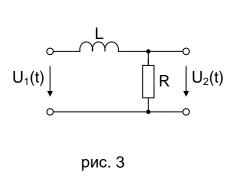
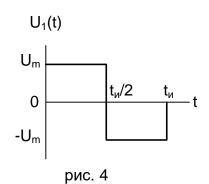

Задание №3




1. В цепи, содержащей элементы $R_1 = 1.0$ КОм, $R_2 = 5.25$ КОм, L = 250 мкГн, C = 250 пФ, в момент t = 0 замыкающийся ключ закорачивает источник тока $i_0(t) = 10 \cos{(2\cdot 10^{-6}t)}$ мА. Найти напряжение на конденсаторе U(t), пользуясь классическим методом расчета переходного процесса и построить график найденной зависимости, выделив свободную и вынужденную компоненты тока. Сравнить постоянную цепи с периодом источника.

2. Цепь состоит из трех элементов: $R_1 = R_3 = 10$ КОм, $R_2 = 5$ Ком, C = 1 нФ. К цепи подключены два источника постоянного напряжения: $E_1 = 10$ В, $E_2 = 5$ В в момент t = 0 замыкается ключ. Найти зависимость тока i(t), протекающего через E_2 от времени, используя операторный метод, и построить график при t < 0 и > 0.

3. На входе цепи, содержащей сопротивление R=10 Ом и индуктивность L=40 мкГн, действует одиночный импульс напряжения U_1 (t) с амплитудой $U_m=160$ мВ и длительностью $t_u=6$ мкс. Определить переходную и импульсную функции цепи по напряжению. Пользуясь интегралом Дюамеля найти форму выходного импульса U_2 (t). Построить графики U_1 (t) и U_2 (t) в одном масштабе.

