Попов Евгений Александрович

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПЕРЕДАЧИ СООБЩЕНИЙ С ПОМОЩЬЮ МНОГОПОЗИЦИОННЫХ СИГНАЛОВ С КОМПАКТНЫМ СПЕКТРОМ ПРИ НАЛИЧИИ НЕЛИНЕЙНОГО ПРЕОБРАЗОВАНИЯ В ПЕРЕДАЮЩЕМ ТРАКТЕ

Специальность 05.12.04 — Радиотехника, в том числе системы и устройства радионавигации, радиолокации и телевидения.

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Санкт-Петербург 2001

Работа выполнена в Санкт-Петербургском государственном техническом университете
Научный руководитель
доктор технических наук, профессор Макаров С. Б.
Официальные оппоненты
доктор технических наук, профессор Сосунов Б. В.
кандидат технических наук, профессор Соловьев А. А.
Ведущая организация
АООТ "МАРТ" (г. Санкт-Петербург)
Защита состоится июня 2001 г. в часов на заседании диссертационного
совета Д 212.229.01 в Санкт-Петербургском государственном техническом уни-
верситете по адресу: 195251, Санкт-Петербург, ул. Политехническая, 29.
С диссертацией можно ознакомится в библиотеке Санкт-Петербургского госу-
дарственного технического университета.
Автореферат разослан "" 2001 г.
И.о. ученого секретаря
диссертационного совета
доктор физико-математических наук Титов А. И.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Повышение эффективности передачи дискретных сообщений по радиоканалам в условиях, когда имеются технико-экономические ограничения на работу радиосистемы, было и остается одной из основных задач, стоящих перед разработчиками аппаратуры передачи и приема сигналов. В последнее время системы передачи дискретных сообщений (СПДС) работают при наличии существенных технико-экономических ограничениях: нелинейные режимы работы передающих трактов СПДС, масса-габаритные показатели аппаратуры, быстродействие и т.п. Повышение эффективности, как показано в работах J. Anderson, J. Proakis, А. Viterbi, В. И. Тихонова, Л. М. Финка, И. А. Цикина и др., характеризуемое удельными затратами полосы частот и удельными энергетическими затратами, связано с увеличением объемов передаваемой информации за счет увеличения скорости передачи в заданной полосе частот радиоканала СПДС при сохранении высокой достоверности (высокого качества) приема.

Обеспечение малых удельных затрат полосы частот достигается путем применения спектрально-эффективных сигналов с компактным спектром и сигнально-кодовых конструкций на их основе. В то же время перспективность применения спектрально-эффективных сигналов ограничивается возможностью аппаратурной реализации трактов радиопередатчиков. Наиболее серьезным ограничением является наличие в передающих трактах проводных каналов, в трактах аналоговой и цифровой модуляции сигналов, в мощных каскадах радиопередатчиков различного рода устройств с нелинейными вольт-амперными характеристиками. При этом вопросы влияния нелинейного преобразования на спектральные характеристики и помехоустойчивость приема спектрально-эффективных многопозиционных сигналов в настоящее время изучены недостаточно. Так, важным является рассмотрение влияния такого преобразования сигналов на увеличение уровня внеполосных излучений и вероятность ошибок. Однако решение подобной задачи затрудняется отсутствием методики оценки искажений энергетического спектра случайной последовательности спектрально-эффективных сигналов при наличии нелинейного преобразования.

Целью работы является повышение эффективности передачи дискретных сообщений с помощью многопозиционных сигналов с компактным спектром при

наличии безынерционного нелинейного преобразования в трактах модуляции и усиления радиопередающих устройств.

Для достижения указанной цели требуется решить следующие задачи:

- 1. Разработать методику оценки искажений энергетического спектра случайной последовательности многопозиционных спектрально-эффективных сигналов на выходе нелинейных трактов радиопередающих устройств, для чего необходимо:
- оценить степень близости представленных в аналитическом виде законов распределения значений спектрально-эффективных сигналов к нормальному виду;
- для больших значений объема канального алфавита, сложных форм огибающей сигналов и высоких уровней межсимвольной интерференции по гистограммам распределений мгновенных значений оценить степень близости законов распределений к нормальному виду.
- 2. Провести анализ временных и спектральных характеристик многопозиционных спектрально-эффективных сигналов на выходе нелинейных устройств и сравнить эти характеристик (полосу занимаемых частот, уровень внеполосных излучений) с характеристиками известных спектрально-эффективных сигналов.
- 3. Провести поиск путей построения многопозиционных случайных последовательностей сигналов в условиях технико-экономических ограничений, связанных с нелинейными режимами работы различных каскадов радиопередающих устройств, обеспечивающих малые уровень внеполосных излучений и ширину полосы частот. При решении этой задачи необходимо провести:
- исследование энергетических спектров случайных последовательностей многопозиционных спектрально-эффективных сигналов с амплитудно-фазовой манипуляцией и управляемой межсимвольной интерференцией;
- исследование энергетических спектров случайных последовательностей многопозиционных многочастотных сигналов, построенных на основе сигналов с амплитудно-фазовой манипуляцией на каждой поднесущей;
- оценку степени уменьшения величины пик-фактора случайных последовательностей многопозиционных сигналов после нелинейного преобразования.

- 4. Оценить эффективность применения подоптимальных алгоритмов обработки при приеме случайных последовательностей спектрально-эффективных сигналов при наличии нелинейного преобразования в радиопередающем устройстве.
- 5. Сравнить влияние различных видов нелинейных вольт-амперных характеристик трактов радиопередающих устройств на искажение энергетического спектра случайных последовательностей многопозиционных спектрально-эффективных сигналов.

Научная новизна результатов исследований состоит в следующем:

- Предложена методика оценки нелинейных искажений энергетического спектра случайной последовательности многопозиционных спектрально-эффективных сигналов и найдены выражения, устанавливающие однозначную связь между корреляционными функциями на входе и выходе безынерционного нелинейного преобразователя, что позволяет оценить уровень этих искажений в различных трактах модуляторов и усилителей радиопередающих устройств.
- Оценена степень близости распределения мгновенных значений огибающей случайной последовательности сигналов к нормальному и показано, что для сигналов с огибающей вида "приподнятый косинус" при интерференции нескольких соседних символов различие распределений близко к допустимому при уровне значимости $\alpha = 0.05$.
- Показано, что при наличии межсимвольной интерференции в случайной последовательности сигналов плотность вероятности разделяется на непрерывную $w_{\xi}^{n}(x)$ и дискретную $w_{\xi}^{\delta}(x)$ части, причем наличие дискретных компонент отражает постоянство комплексной огибающей, когда значения предшествующего $d_{r}^{(k-1)}$ и текущего $d_{q}^{(k)}$ символов совпадают. В частности, для n=2 и m=64 вклад дискретной компоненты в функцию распределения составляет 0,0156, а в случае n=3 и m=64 он не превышает $2,5\cdot 10^{-4}$.
- При увеличении уровня межсимвольной интерференции (параметра n) расширение полосы частот и увеличение относительного уровня энергетического спектра на выходе нелинейного преобразователя становится меньше, что обусловлено возрастанием степени концентрации энергии сигнала в занимаемой полосе частот и уменьшением энергии внеполосных излучений. Например, при

использовании модели гладкого ограничителя расширение полосы частот уменьшается в 1,2 раза по уровню $-30\partial E$, а увеличение относительного уровня энергетического спектра снижается на 5,4дБ в сечении 0,88/T при переходе от n=3 к n=4:

- Для линейного ограничителя "со ступенькой" полоса частот и относительный уровень энергетического спектра практически не изменяется по отношению к случаю применения линейного и гладкого ограничителей. Это обстоятельство позволяет рекомендовать использовать подобного рода микроэлектронные приборы в качестве усилительных узлов наряду с приборами, имеющими вольт-амперные характеристики без отсечки напряжений в области малых значений.
- Показано, что при нелинейном преобразовании случайной последовательности многопозиционных спектрально-эффективных сигналов с АФМ с увеличением уровня межсимвольной интерференции в 4 раза значение пик-фактора уменьшается более чем в 2,5 раза.
- Предложены пути построения многопозиционных случайных последовательностей сигналов с частотной манипуляцией, фазовые траектории которых формируются на основе нескольких, периодически чередующихся индексов модуляции, что в условиях нелинейного преобразования сигналов в радиопередатчиках позволяет при высокой степени компактности спектра получить высокую помехозащищенность приема.
- Предложены и найдены оптимальные значения интервала анализа и оптимальные значения начала этого интервала, позволяющие получить минимальные значения вероятности ошибочного приема при использовании когерентных методов обработки сигналов с АФМ и управляемой межсимвольной интерференцией при наличии нелинейного преобразования в радиопередающих устройствах.

На защиту выносятся следующие положения:

• Степень приближения плотности вероятности к гауссовскому виду мгновенных значений случайной последовательности многопозиционных спектрально-эффективных сигналов с увеличением уровня межсимвольной интерференцией возрастает для сигналов с огибающей вида "приподнятый косинус" и

отличие плотности вероятности приближается к допустимому значению $\chi_{\alpha}^2 = 55$ при n=4 .

- Плотность вероятности мгновенных значений случайной последовательности многопозиционных спектрально-эффективных сигналов с управляемой межсимвольной интерференцией и построенных на основе амплитудных импульсов различной длительности разделяется на непрерывную и дискретную части, причем с увеличением объема канального алфавита и уровня межсимвольной интерференции вклад дискретной части уменьшается.
- При нелинейном преобразовании случайной последовательности спектрально-эффективных сигналов с управляемой межсимвольной интерференцией с ростом уровня этой интерференции и объема канального алфавита расширение полосы частот и увеличение относительного уровня энергетического спектра оказывается существенно меньше, чем для сигналов без межсимвольной интерференции.
- Применение метода нескольких периодически чередующихся индексов модуляции при построении многопозиционных случайных последовательностей сигналов с частотной модуляцией и непрерывной фазой при сохранении высокой степени компактности энергетического спектра при нелинейном преобразовании, позволяет получить помехоустойчивость приема, близкую к помехоустойчивости двухпозиционных сигналов.
- Существуют и найдены оптимальные значения начала интервала анализа и величины этого интервала при использовании когерентных методов обработки спектрально-эффективных сигналов с АФМ и межсимвольной интерференции при наличии нелинейного преобразования в радиопередатчике, позволяющие более чем на порядок снизить вероятность ошибок в области значений отношения сигнал/шум h = 3.

Практическая ценность работы

Предложены многопозиционные спектрально-эффективные сигналы с частотной модуляцией и непрерывной фазой на основе нескольких, циклически повторяющихся индексов частотной модуляции для систем мобильной связи, работающих в стандартах GSM, CDMA и др. Выбором формы фазового импульса увеличивается компактность энергетического спектра, а выбором значений индексов модуляции может быть повышена помехоустойчивость приема.

Предложены многочастотные сигналы с многопозиционной квадратурной модуляцией (КФМ, КАМ-16, КАМ-64) и огибающими сложного вида на каждой из поднесущих частот. Сигналы и методы их формирования используются при построении трактов канального кодирования и модуляции в отечественной аппаратуре цифрового телевизионного вещания по стандарту DVB-Т. При этом существенно снижается уровень внеполосных излучений в телевизионном канале и уровень межканальных помех в ретрансляционных системах.

Предложенная методика оценки искажений энергетического спектра при нелинейном преобразовании рекомендована для внедрения в практику анализа спектральных характеристик сигналов, используемых в выпускаемых радиопередатчиках.

Основные теоретические и практические результаты диссертационной работы используются в учебно-методических материалах по профилирующей дисциплине специальности "Радиофизика и электроника" (071500), а также вошли в ряд отчетов по научно-исследовательским и научно-методическим работам: "Определение спектральных составляющих последовательности радиоимпульсов" (№ 0798/21/27-3), "Разработка концепции создания учебной техники для профилирующих дисциплин специальностей в области защиты информации", "Разработка наукоемкого оборудования по системам передачи информации. Программа "Конверсия и высокие технологии". 1997 — 2000 год".

Методы исследования

Для решения поставленных задач использовались: методы интегральных преобразований, методы теории вероятности, методы решения дифференциальных уравнений, методы имитационного моделирования, методы теории информации.

Апробация работы

Основные результаты работы докладывались автором на научно-технической конференции "Методы и технические средства обеспечения безопасности информации" (Санкт-Петербург, 1998 г.); научно-технической конференции "Новейшие достижения в области телевидения, аудио- и видеотехники", (Санкт-Петербург, 1999 г.); научно-технической конференции студентов и аспирантов СПбГТУ (Санкт-Петербург, 2000 г.). По теме диссертации опубликовано 7 работ.

Структура и объем работы

Диссертация состоит из Введения, пяти глав, Заключения и списка литературы. Текст диссертации содержит 201 машинописную страницу, 119 рисунков и 45 таблиц. Список литературы включает 83 наименования.

Вклад автора в разработку проблемы

Научные положения, теоретические выводы, практические рекомендации, расчеты и математическое моделирование разработаны автором самостоятельно.

Достоверность полученных результатов определяется: применением общепризнанных методик определения временных и частотных характеристик случайных последовательностей сигналов; использованием аппарата теории вероятностей, математической статистики и теории случайных процессов при получении аналитических результатов; достоверность теоретических результатов подтверждается численными экспериментами при имитационном моделировании.

СОДЕРЖАНИЕ РАБОТЫ

Во Введении обосновывается актуальность работы, формулируются цель и задачи исследований, представляются положения, выносимые на защиту, характеризуется научная новизна и практическая ценность работы.

В первой главе рассматриваются пути повышения эффективности систем передачи информации, что может быть достигнуто при использовании спектрально-эффективных сигналов со сложными амплитудными и фазовыми траекториями. Полученные для линейного канала временные и спектральные характеристики сигналов существенно изменяются в условиях технико-экономических ограничений работы системы, основным из которых является степень нелинейности режима работы трактов модуляции и усиления радиопередающих устройств.

Рассмотрены аппроксимации характеристик ряда нелинейных приборов, применяемых в трактах модуляции и усиления радиопередающих устройств.

Модель линейного ограничителя:

$$f(x) = \begin{cases} ax/\alpha_1, & |x| \le \alpha_1 \\ a \operatorname{sgn}(x), & |x| > \alpha_1 \end{cases}$$
 (1)

отражает процесс "насыщения" амплитудной характеристики при идеальной линейности остального участка. Характеристика реального усилительного прибора весьма точно приводится к характеристике линейного ограничителя посредством компенсирующих предыскажений.

Модель линейного ограничителя "со ступенькой" ($\alpha_1 > \alpha_2$):

$$f(x) = \begin{cases} 0, & |x| < \alpha_2 \\ ax/\alpha_1, & |x| \in [\alpha_2; \alpha_1]. \\ a \operatorname{sgn}(x), & |x| \ge \alpha_1 \end{cases}$$
 (2)

Такие искажения присущи ряду усилителей и преобразователей, выполненных по микроэлектронной технологии с режимом отсечки в области малых значений входного напряжения.

Модель гладкого ограничителя:

$$f(x) = \frac{\sqrt{2a}}{\sqrt{\pi}} \int_{0}^{x/\sigma_0} \exp\left(-y^2/2\right) dy$$
 (3)

отражает плавный переход линейного участка к насыщению.

При использовании этих моделей ограничителей проведен анализ влияния нелинейного преобразования на искажение сигналов с амплитудно-фазовой манипуляцией (Φ M) длительности T.

Из анализа результатов следует, что на выходе ограничителей происходит существенное расширение полосы частот энергетического спектра и подъем уровня внеполосных излучений. Например, для двоичных сигналов с $A\Phi M$ при увеличении степени ограничения до предельного уровня ограничения происходит увеличение в 4,2 раза ширины полосы частот и уровня внеполосных излучений более чем на $30\,\ddot{a}A$ при отстройке на величину 2/T.

Во второй главе рассматривается возможность повышения эффективности передачи информации путем использования различного вида многопозиционных спектрально-эффективных сигналов с управляемой межсимвольной интерференцией.

Рассмотрены многопозиционные сигналы с $A\Phi M$, у которых вид комплексной огибающей зависит как от данного передаваемого символа, так и от предшествующих и последующих символов. При этом символы d_r принадлежат m-ичному алфавиту $d_r = (m-2r+1)/(m-1)$, r=1,2,...,m. Построенные подобным образом последовательности сигналов имеют существенно лучшие спектральные и временные характеристики, чем известные сигналы с $A\Phi M$ длительности T. Кроме того, преимуществом многопозиционных сигналов с $A\Phi M$ является относительная простота их формирования и приема. К недостаткам следует отнести существенное снижение помехоустойчивости при больших значениях m объема канального алфавита.

Предложены многопозиционные сигналы с частотной манипуляцией и непрерывной фазой (ЧМНФ), построенные на основе двух и более циклически повторяющихся индексов частотной модуляции с рациональными значениями, задаваемыми как отношение целых чисел. Показано, что применение двухиндексных сигналов с ЧМНФ позволяет при приблизительно одинаковых спектральных характеристиках получить энергетический выигрыш $1,0 \div 1,5$ äÁ по сравнению с аналогичными одноиндексными сигналами. Преимуществом сигналов с ЧМНФ является постоянное значение пик-фактора, равное единице.

Рассмотрены многочастотные сигналы, построенные на основе многопозиционной квадратурной модуляцией (КФМ, КАМ-16, КАМ-64) со сложными амплитудными траекториями на каждой из поднесущих частот. Такие сигналы обеспечивают высокую степень компактности энергетического спектра. Однако большое значение пик-фактора колебаний, достигающее 30 äÅ, ограничивает область их применения.

В третьей главе решается задача нахождения закона распределения мгновенных значений комплексной огибающей случайной последовательности рассмотренных в Главе 2 сигналов с амплитудно-фазовой манипуляцией и сложными амплитудными траекториями.

Комплексная огибающая $\xi_c(t)$ такой случайной последовательности много-позиционных сигналов имеет вид

$$\xi_c(t) = \sum_{k=-\infty}^{\infty} d_r^{(k)} A(t - kT), \tag{4}$$

где смена значений символов $d_r^{(k)}$ происходит в моменты времени $t_k = kT + \tau$, а случайная для каждой реализации величина \mathcal{T} распределена равномерно на интервале [0;T]. При длительности A(t), равной nT ($n=1,2,\ldots$), последовательность (4) можно условно представить в виде суммы последовательностей сигналов длительностью nT и следующих с периодом nT. Такие последовательности сдвинуты относительно друг друга на период T, и характеристическая функция распределения $\Theta_{\varepsilon}(v)$ равна

$$\Theta_{\xi}(v) = \frac{1}{nTm^{n}} \int_{0}^{nT} \prod_{j=1}^{n} \sum_{r=1}^{m} \exp\left[jd_{r} A(t + (j-1)T - \tau)v\right] d\tau.$$
 (5)

В работе показано, что при $n \ge 2$ плотность вероятности разделяется на непрерывную $w^n_\xi(x)$ (при $d_r \ne d_q$) и дискретную $w^\delta_\xi(x)$ (при $d_r = d_q$) части:

$$W_{\xi}(x) = W_{\xi}^{H}(x) + W_{\xi}^{\partial}(x).$$

Так, при n = 3 и огибающей вида

$$A(t) = A_0 \sin^2(\pi t / nT), \ t \in [0; nT]$$
 (6)

компоненты $w_{\xi}^{{}^{\scriptscriptstyle{H}}}(x)$ и $w_{\xi}^{{}^{\scriptscriptstyle{O}}}(x)$ имеют вид:

$$w_{\xi}^{\delta}(x) = \frac{1}{m^3} \sum_{r=1}^{m} \delta[x - d_r A_0],$$

И

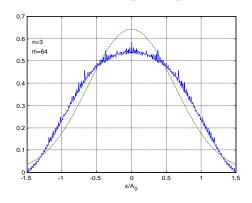
$$w_{\xi}^{u}(x) = \frac{1}{m^{3}\pi} \sum_{r \neq q \neq p} \frac{rect[x - A_{0}(d_{r} + d_{p} + d_{q})/2, A_{0}D_{rqp}]}{\sqrt{[A_{0}D_{rqp}/2]^{2} - [x - A_{0}(d_{r} + d_{q} + d_{p})/2]^{2}}},$$
 (7)

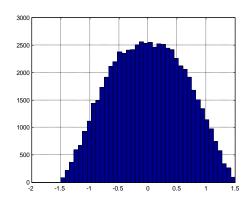
где

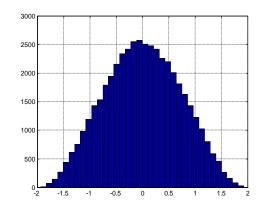
$$D_{rpq} = \frac{1}{2} \sqrt{3(d_p - d_q)^2 + (2d_r - d_p - d_q)^2}.$$

Наличие дискретного компонента в плотности распределения отражает постоянство комплексной огибающей, когда значения предшествующего $d_r^{(k-1)}$ и текущего $d_q^{(k)}$ символов совпадают. При больших значениях m вклад $w_\xi^\delta(x)$ в функцию распределения мал и, например, для m=64, составляет 2,5·10⁻⁴.

Для $n \ge 3$ и больших значений m непрерывный компонент распределения является результатом наложения достаточно большого числа независимых величин и, вследствие пренебрежимой малости дискретного компонента, результи-




Рис. 1. Непрерывная часть w_{ξ}^{l} плотности вероятности


рующее распределение приближается к нормальному распределению с нулевым средним a=0 и дисперсией σ^2 , определяемой из распределения значений огибающей. На Рис.1 приведен вид непрерывной части w_ξ^i плотности распределения при n=3 и m=64. На этом же рисунке приведен вид соответствующего нормального распределения (пунктирная линия). Сред-

неквадратическое расхождение между двумя распределениями составляет $\delta^2 = 0.01$.

Для спектрально-эффективных сигналов с управляемой межсимвольной интерференцией оценка степени приближении распределения к нормальному виду

была проведена на основе гистограмм. Для сигналов с АФМ при форме огибающей вида (4) для n=3 отличие гистограммы от нормального вида по критерию согласия χ^2 составляет 872. Показано, что при увеличении длительности амплитудного импульса до значения n=4 отличие гистограммы от нормального распределения составляет лишь $\chi^2=79$. Гистограмма для n=4 приведена на Рис.2.

Рис. 2. Гистограмма для n = 3

Рис. 3. Гистограмма для n = 4

Таким образом, как следует из результатов работы, распределение мгновенных значений комплексной огибающей последовательности сигналов с АФМ и управляемой межсимвольной интерференцией близко к нормальному распределению.

В **четвертой** главе рассматривается методика оценки влияния нелинейного безынерционного преобразования искажений энергетического спектра многопозиционных сигналов и на основе этой методики рассчитываются нелинейные искажения энергетического спектра для различных видов сигналов и моделей (1) — (3) нелинейного преобразователя.

Корреляционная функция сигнала после нелинейного безынерционного преобразования y = f(x) имеет вид:

$$K(\tau) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1) f(x_2) w_{\xi}^{(2)}(x_1, x_2, \tau) dx_1 dx_2.$$
 (8)

Для $w_{\xi}^{(2)}(x_1,x_2,\tau)$ используем двумерную плотность вероятности нормального процесса, записываемой в форме

$$w_{\xi}^{(2)}(x_1, x_2, \tau) = \frac{1}{2\pi\sigma^2 \sqrt{1 - R^2(\tau)}} \exp\left\{-\frac{x_1^2 - 2R(\tau)x_1x_2 + x_2^2}{2\sigma^2 \left[1 - R^2(\tau)\right]}\right\}$$
(9)

с нулевым средним, дисперсией σ^2 , вычисляемой из (5), и коэффициентом корреляции $R(\tau)$, определяемым, согласно теореме Винера-Хинчина, по энергетическому спектру $G(\omega)$ сигнала на входе нелинейного преобразователя.

Методика анализа влияния нелинейного безынерционного преобразования связана с получением зависимости между корреляционными функциями $R(\tau)$ и $K(\tau)$ на входе выходе нелинейного преобразователя в виде:

$$K(\tau) = \sum_{k=1}^{\infty} u_k R^k(\tau). \tag{10}$$

Искомая зависимость является результатом решения обыкновенного дифференциального уравнения относительно $K(\tau)$,

$$\frac{\partial^{k} K_{\zeta}}{\partial R^{k}} = \frac{\sigma^{2k-2}}{2\pi\sqrt{1-R^{2}}} \int_{-\infty-\infty}^{\infty} f^{(k)}(x_{1}) f^{(k)}(x_{2}) \exp\left\{-\frac{x_{1}^{2} - 2Rx_{1}x_{2} + x_{2}^{2}}{2\sigma^{2}(1-R^{2})}\right\} dx_{1} dx_{2}$$
(11)

с начальными условиями

$$\frac{d^{l}B}{dR^{l}}_{|R=0} = \sigma^{2l}m_{l1}m_{l2}, \quad l = 0, 1, ..., k-1,$$
(12)

где

$$m_{li} = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} f^{(l)}(x) \exp\left\{-\frac{x_i^2}{2\sigma^2}\right\} dx_i, \quad i = 1, 2.$$

Так, например, для модели гладкого ограничителя (3) зависимость (10) имеет вид:

$$K(\tau) = \frac{R(\tau)}{1+g^2} + \sum_{k=1}^{\infty} \frac{\left[(2k-1)!!\right]^2}{(2k+1)!} \left[\frac{R(\tau)}{1+g^2}\right]^{2k+1},\tag{13}$$

где $g = \sigma_0 / \sigma$.

В общем случае энергетический спектр сигнала после нелинейного преобразования имеет следующий форму:

$$F(\omega) = \sum_{k=1}^{\infty} F_k(\omega), \qquad (14)$$

где $F_k(\omega)$ — преобразование Фурье от $u_k R^k(\tau)$. Первое слагаемое в (14) повторяет форму энергетического спектра сигнала на входе нелинейного преобразователя, а последующие слагаемые определяют собственно нелинейные искажения. На Рис.4 приведен вид нормированного энергетического спектра многочастотного сигнала, применяемого в системе цифрового телевизионного вещания стандарта DVB-T, с числом поднесущих H = 256 на выходе предельного ограничителя, ко-

гда на каждой поднесущей используются 16-позиционные сигналы с АФМ, огибающей (4) и с интерференцией двух символов (кривая 2). На этом же рисунке приведен вид энергетического спектра неискаженного сигнала (кривая 1), а также многочастотного сигнала с прямоугольной формой огибающей (кривая 3) на каждой из поднесущей.

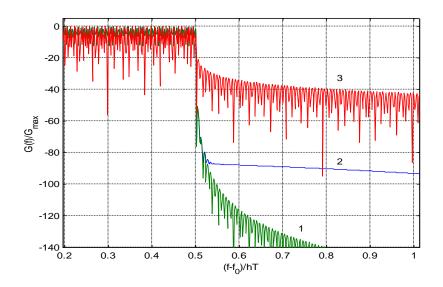


Рис. 4. Энергетический спектр многочастотного сигнала

В пятой главе рассматриваются особенности приема многопозиционных спектрально-эффективных сигналов.

Оптимальный в смысле максимального правдоподобия алгоритм приема сигналов $y_r(t)$, r=1,...,m в присутствии аддитивного нормального белого шума n(t) со спектральной плотностью средней мощности N_0 при анализе принятого сигнала

$$z(t) = \mu y_r(t - kT) + \mu y_-(t, i) + \mu y_+(t, j) + n(t)$$
(15)

имеет вид:

регистрируется символ d_l , если для всех $r \neq l$

$$\sum_{i=1}^{m^{n-1}} \sum_{j=1}^{m^{n-1}} \exp \left[B_l^{(i,j)} - \frac{\mu^2}{N_0} E_l^{(i,j)} \right] > \sum_{i=1}^{m^{n-1}} \sum_{j=1}^{m^{n-1}} \exp \left[B_r^{(i,j)} - \frac{\mu^2}{N_0} E_r^{(i,j)} \right], \tag{16}$$

где

$$B_r^{(i,j)} = \frac{2\mu}{N_0} \int_{t_0}^{t_0+T_a} z(t) [y_r(t-kT) + y_-(t,i) + y_+(t,j)] dt;$$

$$E_r^{(i,j)} = \int_{t_0}^{t_0+T_a} [y_r(t-kT) + y_-(t,i) + y_+(t,j)]^2 dt,$$

 μ — коэффициент передачи канала. Слагаемые $y_{-}(t,i)$ и $y_{+}(t,j)$, обусловленные межсимвольной интерференцией, представляют собой формы последовательности сигналов на выходе нелинейного преобразования.

В работе получены оптимальные значения интервала анализа t_0 и самого интервала анализа T_a , равные соответственно $t_0 \approx T/2$ и $T_a \approx 3T/4$, где T — период следования символов канального алфавита, которые минимизируют вероятность ошибочного приема.

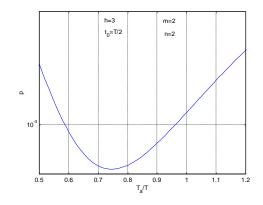


Рис. 5. Вероятность ошибки при $t_0 = t_{0opt}$

Рис. 6. Вероятность ошибки при $\,T_a = T_{a\,opt}\,$

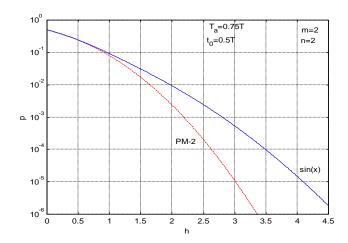


Рис. 7. Вероятность ошибочного приема при оптимизированных t_0 и T_a

Зависимости вероятности ошибочного приема от параметров интервала анализа при n=2, m=2 и огибающей вида $\sin(x)$ представлены на Рис.5 и Рис.6. Результирующая зависимость вероятности ошибочного приема от отношения сигнал/шум $h=\sqrt{E_r/N_0}\,$ для сигналов с огибающей вида $\sin(x)\,$ при оптимизированных значениях интервала анализа приведена на Рис.7. При оптимальном выборе параметров интервала анализа наблюдается снижение вероятности ошибок более чем на порядок при значении отношения сигнал/шум h=3.

В заключении сформулированы положения, выносимые на защиту.

Публикации по теме диссертации

- 1. Макаров С. Б., Попов Е. А. Распределение значений комплексной огибающей случайной последовательности многопозиционных спектрально-эффективных сигналов. // Радиотехника, 2001, № 1.
- 2. Макаров С. Б., Попов Е. А. Распределение мгновенных значений случайной последовательности сигналов для систем цифрового телевидения. Труды конференции ICARSM'99, Воронеж, 1999 г.
- 3. Макаров С. Б., Попов Е. А. Статистические свойства последовательностей сигналов с протяженными амплитудными траекториями. Тезисы доклада НТК "Методы и технические средства обеспечения безопасности информации" 27—29 октября 1998 г. СПб, Изд. СПбГТУ, 1998 г.
- 4. Makarov S., Popov E. Distribution of Instant Meanings of a Random Sequence of Signals for System of Digital TV. Conference Trans. ICARSM'99. Voronezh, 1999.
- 5. Артамонов А. А., Варгаузин. В. А., Попов Е. А., Ткаченко Д. А. Основные положения цифрового телевидения высокой четкости. Тезисы доклада НТК "Новейшие достижения в области телевидения, аудио- и видеотехники", СПб, 1999 г.
- 6. Артамонов А. А., Макаров С. Б., Попов Е. А., Ткаченко Д. А. Методика оценки влияния нелинейного преобразования на искажения энергетического спектра сигналов цифрового телевидения. Тезисы доклада НТК "Новейшие достижения в области телевидения, аудио- и видеотехники", СПб, 1999 г.
- 7. Попов Е. А. Повышение эффективности систем передачи информации путем применения алгоритмов приема "в целом". Тезисы докладов научно-технической конференции студентов и аспирантов СПбГТУ, Часть 5, СПб., Изд. СПбГТУ, 2000 г.